منابع مشابه
On Pairwise Naive Bayes Classifiers
Class binarizations are effective methods for improving weak learners by decomposing multi-class problems into several two-class problems. This paper analyzes how these methods can be applied to a Naive Bayes learner. The key result is that the pairwise variant of Naive Bayes is equivalent to a regular Naive Bayes. This result holds for several aggregation techniques for combining the predictio...
متن کاملFurther notes on Naive Bayes
The aphorism “All models are wrong but some are useful” (Box, 1978) sums up much of what ML is about. The assumptions we make in the Naive Bayes approach to sentimanet classification are wrong, but this is true of the assumptions made in all current formal models of human language (statistical or otherwise), with the possible exception of a few which are very restricted indeed. However, the que...
متن کاملSpam Filtering with Naive Bayes - Which Naive Bayes?
Naive Bayes is very popular in commercial and open-source anti-spam e-mail filters. There are, however, several forms of Naive Bayes, something the anti-spam literature does not always acknowledge. We discuss five different versions of Naive Bayes, and compare them on six new, non-encoded datasets, that contain ham messages of particular Enron users and fresh spam messages. The new datasets, wh...
متن کاملDiagnosis of Pulmonary Tuberculosis Using Artificial Intelligence (Naive Bayes Algorithm)
Background and Aim: Despite the implementation of effective preventive and therapeutic programs, no significant success has been achieved in the reduction of tuberculosis. One of the reasons is the delay in diagnosis. Therefore, the creation of a diagnostic aid system can help to diagnose early Tuberculosis. The purpose of this research was to evaluate the role of the Naive Bayes algorithm as a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2019
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1193/1/012036